Periodic Table of the Loop Macro

simple loop

(loop
(prina
"type something”
{force-output)
{zead))

do*

(loop for i balow 5
do (print 1))

(leop with = = (+ 1 2)
repeat 5
de (print x])

repeat

(loop repeat 5
do (print
"Printa five timeas™))

named

(loop named outer
for i balow 10
de
(progn
{print "outer")
{locp named inner
for x balew i
do (print "##*inner")
whan (= x 2)
do

(zreturn-from outer
‘kicked-out-all-the-way))))

(dafparamatar aalary

(make-hash-table))
(setf (gethash 'bob salary) 80)
(setf (gethash ‘john salary) 90)
{loop for parson being each hash-lkey
of salary using (hash-value amt} do
(print (cons person amt)))

being

(defparameter salary

(make-hash-table))
(satf (gethash 'bob salary) 80)
(setf (gethash 'john salary) 90)
({loop for person being each hash-key
of salary do (print person})

return

(loop for i balow 10
when (= i 5)
return

'leaving-early
do (print i))

return-from

(loop named outer
for i balow 10
do
(progn
(print "outar")
(locp named innex
for x balew 1
do (print "**inner")
when (= x 2)
do

(return-from outer
"kicked-out-all-the-way))))

the -

(defparamater salary

(make-hash-table))
(setf (gethash 'bob salary) 80)
(satf (gethash 'john salary) 90}
{locp for person being the hash-keys
of salary do (print parson))

each

(defparamater salazy

(make-hash-tabla))
(setf [gethash "bob salary) B80)
{satf (gethash 'john salary) 90)
(leop for person being each hash-key
of salary do (print person}})

initially

{loop initially
{print
'loop-begin)
for x balow 3
do (print x))

while

{loop for & in '(0 2 4 555 6)
while (evenp i}
do (print i)}

hash-keys

(defparamatar salar:

(make-hash-table) }
(setf (gethash 'bob salary) 80)
(sotf (gethash 'john salary) 90)
{loop for parsen being tha hash-kays
of salary do (print person))

hash-key

(defparameter salary

(make-hash-table))
(setf (gethash 'bob salary) 80)
(setf (gethash 'john salary) 50)
{loop for person baing sach hash-kay
of salary do [(print person))

finally

(loop for x below 3
da (print x)
finall

{print ‘loop-and))

until

(loop for i
£z

am
do (print i)
until (> i 3))

hash-values

(dafparamater salary

(make-hash-table))
[setf (gethash 'bob salary) B80)
{satf (gethash 'john salary) %0}
(loop for amt being the hash-valuss
of salary do (print amt))

hash-value

(defparamoter salary

(make-hash-table))
(setf [gethash 'bob salary) BO)
{setf (gethash 'john salary) 80}
({locp for amt being sach hash-valus
of salary do (print amt))

200 Chapter 10

.
*
if count
(loop for i uo«;gt i
Balcke 5 in ‘(1111
if (oddp 1) count 1)
do (print 1))
f | h #
or as when sum
1 \\'
tsop :S;‘u (loop as x \ {locp for i {loop
do (print i) from 5 £ below 4 for 41 balow 5
whan (= i 5) to 10 whan {oddp 1) sum 1)
return collect x) do (print i)
“zuchini) L ; do (print "yup"))
. e .. . *
n on across into unless minimize
{loop
{loop {lecp for x {loop for 1 {leop for i {loop for i for 4
for i en "(1 3 5) across in "{3 8 73 4 -5) below 4 in '{3 212 3)
in ' {100 20 3) de (print x}) {100 20 3) minimize 1 unless (oddp 1) minimize 1}
sum 1) sum i) into lowest do (print 1))
maximize i
into biggest
finally
(return
{cons lowest
biggest)))

by

{loop for i
from 6
to 8 by 2

sum i)

from

{loop for i
from 6
to 8
um i)

to

{loop for i

always

{loop for 4
in (0 2 4 6)
always (svenp i)}

and

{locp for x
below 5
when (= x 3)
do (print "do this")
and
do (print
“also do this")
do (print
“always do this®})

maximize*

{loop
for i
in ‘(12321
maximize i)

*®
then upfrom upto never else append
{loop repeat 5 {loop for i {loop for i {loop for i {loop for i {loop for 1

for x = 10.0 upfram & from & in "{0 2 4 &) balow 5 balaw 5
then (/ x 2) to 8 upto 8 never (oddp i)) if (oddp i) append
collect x) sum 1) sum i} do (print i) {list '2 i)
else
de
(print "wlOE"})
1 *
downfrom |downto |thereis end nconc
{loop for i {loop for 1 {loop for i (lecp for i {loop for i
downfrom 10 from 10 in "(D 2 4 555 6) balow 4 balow 5
to 7 downto 7 thereis (oddp 1)) whan (oddp 1) nconc
do (print 1)) do do (print i) {list 'Z 4))
{print i}] ond

do (print "yup"))

Looping with the loop Command

201

